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Separating Classical and Quantum Correlations1

E. G. Beltrametti2,3,6 and S. Bugajski4,5

We examine to what extent the correlation between two quantum observables at a mixed
state can be separated into a classical and a quantum term. The nonunique decomposition
of quantum mixed states into pure states makes such a separation ambiguous. We outline
this fact by a simple example, which also shows that classical and quantum correlations
may cancel each other out.
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1. INTRODUCTION

The notion of correlation between two observables always refers, explicitly
or implicitly, to a joint observable, hence to a joint measurement. A new approach
to characterize classical and quantum correlations, based on probability theory, has
been recently proposed in Beltrametti and Bugajski (2002, 2003); the description
of both kinds of correlation can be properly done in terms of density functions. In
Section 2 a partial account of this approach is given.

Although we are keen to believe that the concept of quantum correlation
captures the quantum phenomenon of entanglement, we will not refer to the latter
term, in view of different and presumably inequivalent meanings it acquired in the
literature.

In the classical case the notion of correlation always calls into play a mixed
state of the physical system: every correlation disappears at pure states. Thus the
classical correlation has its roots in the way the pure states are mixed up to form
the actual (mixed) state of the physical system. On the contrary, the quantum frame
can give rise to correlations that persist at pure states, so that we might figure two
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different roots of a correlation between quantum observables: a typical quantum
correlation sitting at the pure states and an additional correlation having a classical
nature, generated by the mixing of pure states. In this paper we examine to what
extent these two kinds of correlations can be consistently separated within the
standard framework of quantum mechanics. We will see that such a separation
faces ambiguities when we deal with quantum mixed states due to their nonunique
decomposition into pure states; in fact, a quantum mixed state is represented by a
density operator (of a Hilbert space) and the latter is known to admit infinitely many
convex decompositions into one-dimensional projectors, i.e., into pure states.

These features will be made explicit by adopting the simple example of
Section 3, i.e., a physical system composed of two spin- 1

2 subsystems. In Section 4
we exhibit how the separation of the correlation into a classical and a typical quan-
tum term depends on the statistical content of the mixed state, namely on a piece of
information which is not unambiguously coded in the standard quantum frame. The
unexpected fact that the classical and the quantum term may combine to produce
no total correlation is outlined in Section 5.

The issue of characterizing classical and quantum correlations has been dis-
cussed in the literature under various perspectives: we quote Horodecki et al.
(2001), Henderson and Vedral (2001), Keyl (2002), and Majewski (2002) for fur-
ther bibliography.

2. CLASSICAL AND QUANTUM CORRELATIONS

Consider two observables A1, A2, and denote �1, �2 the measurable spaces
in which they take values. To a state α of the physical system under discussion, the
two observables will associate the probability measures P(A1, α) and P(A2, α)
on �1 and �2, respectively: if Xi ⊆ �i , i = 1, 2, then P(Ai , α)(Xi ) will represent
the probability that Ai takes a value in Xi at the state α. Let A1,2 denote the
joint observable we are referring to: to the state α it will associate the probability
measure P(A1,2,α) on the Cartesian product�1 × �2. According to the probability
theory the two observables A1, A2 are said to be correlated at the state α, relative to
the joint observable A1,2, if P(A1,2, α) differs from the product of the two measures
P(A1, α) and P(A2, α), namely if

P(A1,2, α) �= P(A1, α) � P(A2, α),

where P(A1, α) � P(A2, α) is the measure on �1 × �2 defined by P(A1, α) �
P(A2, α) (X1 × X2) = P(A1, α)(X1) ·P(A2, α)(X2) for everyX1 ⊆ �1, X2 ⊆ �2.

In this paper �1 and �2 will refer to discrete subsets of the reals: if ξ1 ∈ �1,
ξ2 ∈ �2, the correlation between A1 and A2 at the state α, relative to the joint
observable A1,2, will then be completely encoded in the real-valued function ρ on



Separating Classical and Quantum Correlations 1795

�1 × �2 defined by

ρ(ξ1, ξ2) := P(A1,2, α)(ξ1, ξ2)

P(A1, α)(ξ1) · P(A2, α)(ξ2)
, (1)

and called the correlation density function (actually the Radon-Nicodym deriva-
tive, see for instance Bauer (1981) of P(A1,2, α) with respect to P(A1, α) �
P(A2, α).

In the sequel we will mainly refer to the case in which α is a mixed state and
we write

α =
∑

n

wn Pn , 0 ≤ wn ≤ 1,
∑

n

wn = 1, (2)

for its convex decomposition into the family {pn} of pure states (for simplicity we
restrict to discrete convex combinations). Since the physical observables preserve
the convex structure, we have, for an arbitrary observable A,

P(A, α) =
∑

n

wn p(A, pn).

In the classical case, the convex decomposition of mixed state into pure states
is known to be unique; in other words, the set of all states has the peculiar convex
structure of a simplex. Moreover, for any two observables A1, A2 there is a unique
joint observable defined by

P(A1,2, α) =
∑

n

wn P(A1, pn) � P(A2, pn), (3)

so that the correlation density function takes the classical form

ρc(ξ1, ξ2) :=
∑

n wn P(A1, pn)(ξ1) · P(A2, pn)(ξ2)

P(A1, α)(ξ1) · P(A2, α)(ξ2)
. (4)

The distinguishing feature of the classical correlation is that the density function
ρc equals 1 at every pure state: any two observables show no correlation (hence
they are independent) at every pure state. This fact supports the statement that the
classical correlation has its roots in the way the pure states are mixed together to
form the physical state under discussion.

Things are different in the quantum case. The convex decomposition of a
mixed state into pure states is no longer unique, and two observables A1, A2 need
not admit a joint observable. Only in cases A1 and A2 are compatible (namely
when they are represented by commuting operators) is the existence, as well as the
unicity, of the joint observable A1,2 ensured, though the expression of Eq. (3) need
not apply. Of course the correlation between A1 and A2 at the state α, relative to
the joint observable A1,2, is still fully specified by a density function as in Eq. (1).
The peculiar feature of the quantum context is that two observables can exhibit a
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correlation even at a pure state: the correlation density function need not be the
constant unit function at the pure states.

Thus, in the quantum case the correlation between two observables appears
to encompass two possible faces: a correlation already present at the level of pure
states and a correlation produced, as in the classical case, by the mixing of the
pure states occurring in the mixed state we are dealing with. The natural question
then arises whether the correlation between two quantum observables may be
separated into a classical term and a typical quantum term. As discussed in more
detail in Beltrametti and Bugajski (2002, 2003) a formal answer to such a question
corresponds to rewrite the density function ρ, as defined in Eq. (1), in the factorized
form

ρ = ρc · ρq , (5)

where ρc is given in Eq. (4), and ρq is defined by

ρq (ξ1, ξ2) = P(A1,2, α)(ξ1, ξ2)∑
n wn P(A1, pn)(ξ1) · P(A2, pn)(ξ2)

. (6)

We are however faced with a problem: the nonuniquesess of the convex decom-
position of a quantum mixed state into pure states makes the quantity∑

n

wn P(A1, pn)(ξ1) · P(A2, pn)(ξ2) (7)

occurring in the numerator of Eq. (4) and in the denominator of Eq. (6), crucially
dependent upon the particular convex combination we adopt for the mixed state
under discussion. Hence, also the two factors ρc and ρq in Eq. (5) crucially depend
upon the convex decomposition of the mixed state we refer to. The physical system
described in the next section will offer a simple check of all that.

3. A TWO SPIN- 1
2 SYSTEM

Consider a two spin- 1
2 system described in terms of the tensor product space

C2 ⊗ C2. Let | ↑〉 and | ↓〉 be orthonormal vectors of C2, and take the two comea-
surable “local” spin observables (with some abuse of notation we use the same
symbol for an observable and for the corresponding operator)

A1 := sz ⊗ I , A2 := I ⊗ sz ,

where

sx := 1

2
| ↑〉〈↑ | − 1

2
| ↓〉〈↓ |

is the one-particle operator representing the z-component of the spin.
Both A1 and A2 take values in the set�1 = �2 = { 1

2 , − 1
2 } and they correspond

to projection-valued measures (PV measures) on this set, to be denoted E A1 and
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E A2 . Clearly we have

E A1

(
1

2

)
= | ↑〉〈↑ | ⊗ I , E A1

(
−1

2

)
= | ↓〉〈↓ | ⊗ I ,

E A2

(
1

2

)
= I ⊗ | ↑〉〈↑ |, E A2

(
−1

2

)
= I ⊗ | ↓〉〈↓ |.

A state of this physical system will be represented by a density operator D of
C2 ⊗ C2, which becomes a one-dimensional projector if we deal with a pure state.
According to basic rules of quantum mechanics the observables A1, A2 determine,
at the state D, the probability measures on { 1

2 , − 1
2 }:

P(A1, D) = Tr(| ↑〉〈↑ | ⊗ I · D)η 1
2
+ Tr(| ↓〉〈↓ | ⊗ I · D)η− 1

2
, (8)

P(A2, D) = Tr(I ⊗ | ↑〉〈↑ | · D)η 1
2
+ Tr(I ⊗ | ↓〉〈↓ | · D)η− 1

2
. (9)

Here η 1
2

and η− 1
2

denote the measures on { 1
2 , − 1

2 } concentrated, respectively, at
the point { 1

2 } and at the point {− 1
2 }.

The joint measurement of these observables is just a measurement of their
joint observable A1,2. In the quantum framework the latter is uniquely specified
by the PV measure E A1,2 on the Cartesian product { 1

2 , − 1
2 } × { 1

2 , − 1
2 } which takes

the values

E A1,2

(
1

2
,

1

2

)
= | ↑↑〉〈↑↑ |, E A1,2

(
1

2
, −1

2

)
= | ↑↓〉〈↑↓ |,

E A1,2

(
−1

2
,

1

2

)
= | ↓↑〉〈↓↑ |, E A1,2

(
−1

2
, −1

2

)
= | ↓↓〉〈↓↓ |,

where | ↑↑〉 is an abbreviation for | ↑〉 ⊗ | ↑〉, and similarly for | ↑↓〉, | ↓↑〉, | ↓↓〉.
The probability measure on { 1

2 , − 1
2 } × { 1

2 , − 1
2 } determined by A1,2 at D will

then become

P(A1,2, D) = Tr(| ↑↑〉〈↑↑ | · D)η( 1
2 , 1

2 ) + Tr(| ↑↓〉〈↑↓ | · D)η( 1
2 ,− 1

2 )

+ Tr(| ↓↑〉〈↓↑ | · D)η(− 1
2 , 1

2 ) + Tr(| ↓↓〉〈↓↓ | · D)η(− 1
2 ,− 1

2 ) (10)

where η( 1
2 , 1

2 ) is the measure concentrated at the point { 1
2 , 1

2 } and similarly for
η( 1

2 ,− 1
2 ), η(− 1

2 , 1
2 ), and η(− 1

2 ,− 1
2 ).

4. THE ROLE OF THE STATISTICAL CONTENT OF A STATE

As already recalled, a quantum mixed state admits infinitely many decomposi-
tions into pure states. By statistical content of a quantum mixed state we mean a par-
ticular decomposition of the corresponding density operator into one-dimensional
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projectors. We will show that the statistical content of a state is crucial for sepa-
rating classical and quantum correlations.

With reference to the physical system of the previous section, consider the
mixed state

D = w(| ↑↑〉〈↑↑ | + | ↓↓〉〈↓↓ |) + w ′(| ↑↓〉〈↑↓ | + | ↓↑〉〈↓↑ |) (11)

where w , w ′ are positive numbers such that w + w ′ = 1
2 . The right hand side of

this equation represents a particular statistical content of the state.
The probability measures of Eqs. (8), (9), and (10) are easily seen to become,

at the above state,

P(A1, D) = P(A2, D) = 1

2
η 1

2
+ 1

2
η− 1

2
, (12)

P(A1,2, D) = wη( 1
2 , 1

2 ) + w ′η( 1
2 ,− 1

2 ) + w ′η(− 1
2 , 1

2 ) + wη(− 1
2 ,− 1

2 ). (13)

Hence, the density function of the correlation between A1 and A2 at D reads,
according to Eq. (1),

ρ

(
1

2
,

1

2

)
= ρ

(
−1

2
, −1

2

)
= 4w , ρ

(
1

2
, −1

2

)
= ρ

(
−1

2
,

1

2

)
= 4w ′. (14)

In order to discuss the separation of this correlation into a classical and a
quantum term we have to take, as discussed in Section 2, the probability measure
of Eq. (7), and refer it to the convex decomposition in Eq. (11). By inspection of
Eq. (12) we obtain a probability measure which reproduces exactly P(A1,2, D)
of Eq. (13). Thus we see that the correlation between A1 and A2 at the state D
appears to be entirely of a classical nature: with reference to Eqs. (4), (6) we have
now ρ = ρc, while ρq becomes the constant unit function.

To show that the above result crucially depends upon the particular convex
decomposition of Eq. (11), let us observe that the density operator D admits,
among others, also the following decomposition into the so-called Bell base:

D = w(|B1〉〈B1| + |B2〉〈B2|) + w ′(|B3〉〈B3| + |B4〉〈B4|), (15)

where

|B1〉 = 1√
2

(| ↑↑〉 + | ↓↓〉), |B2〉 = 1√
2

(| ↑↑〉 − | ↓↓〉),

|B3〉 = 1√
2

(| ↑↓〉 + | ↓↑〉), |B4〉 = 1√
2

(| ↑↓〉 − | ↓↑〉).

A simple check proves that the probability measures P(A1, D), P(A2, D) are again
as in Eq. (12), and P(A1,2, D) is again as in Eq. (13). This is an expected fact since
the observables act affinely on the states, so that the probability measures on their
outcome spaces do not depend on the specific statistical content of the state. Thus,
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the correlation between A1 and A2 at the state of Eq. (15) is again the one of
Eq. (14).

But let us now look at the separation of this correlation into a classical and a
quantum term. Again we have to take the probability measure of Eq. (7), referring
now to the convex decomposition in Eq. (15): the result is a probability measure
which coincides with P(A1, D) � P(A2, D), namely with the probability measure
in which the two observables A1 and A2 behave as independent. This shows that,
if we refer to the statistical content of D expressed by Eq. (15), the correlation
between A1 and A2 appears to be entirely of a quantum nature (entanglement),
without any classical correlation coming into play. In other words we have now
ρ = ρq , while ρc becomes the constant unit function.

Thus, we see that the correlation between two observables at a given mixed
state may appear purely classical or purely quantum depending on the statistical
content we refer to.

5. A CANCELING OUT EFFECT

The said dependence on the statistical content of the state can be further
emphasized by noticing that the quantum mixed state D of Eq. (11) or of Eq. (15)
admits also the alternative convex decomposition

D = w(| ↑↑〉〈↑↑ | + | ↓↓〉〈↓↓ |) + w ′(|B3〉〈B3| + |B4〉〈B4|). (16)

As expected, and easily checked, even referring to this new statistical content
of D we get again the probability measures P(A1, D), P(A2, D), and P(A1,2, D)
of Eqs. (12) and (13). Hence we find again the correlation between A1 and A2 as
expressed by Eq. (14). To examine the separation of this correlation into a classical
and a quantum part we have now to consider the probability measure of Eq. (7)
and make reference to the convex decomposition of Eq. (16): it is easily seen that
we come to the probability measure

2w + w ′

2
η( 1

2 , 1
2 ) + w ′

2
η( 1

2 ,− 1
2 ) + w ′

2
η(− 1

2 , 1
2 ) + 2w + w ′

2
η(− 1

2 ,− 1
2 ).

Since this probability measure does not coincide neither with P(A1,2, D) nor
with P(A1, D) � P(A2, D) we have to conclude that the correlation between A1

and A2 exhibits now both a classical and a quantum term. With reference to Eqs. (4)
and (6), and by inspection of Eqs. (12) and (13), we get indeed

ρc

(
1

2
,

1

2

)
= ρc

(
−1

2
, −1

2

)
= 2(2w + w ′),

(17)

ρc

(
1

2
, −1

2

)
= ρc

(
−1

2
,

1

2

)
= 2w ′,
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ρq

(
1

2
,

1

2

)
= ρq

(
−1

2
, −1

2

)
= 2w

2w + w ′ ,
(18)

ρq

(
1

2
, −1

2

)
= ρq

(
−1

2
,

1

2

)
= 2.

Intuitively, the occurrence of both a classical and a quantum correlation can
be traced back to the fact that we are now looking at a statistical content of the
state D which involves product states in the subspace spanned by | ↑↑〉, | ↓↓〉, and
Bell states in the subspace spanned by | ↑↓〉, | ↓↑〉: at product states only classical
correlations appear, while at Bell states only quantum correlations do.

A puzzling canceling out effect emerges when we refer to the particular case
w = w ′ = 1

4 . Indeed, the density function ρ (see Eq. (14)) becomes the constant
unit function, while it is evident that neither ρc (see Eq. (17)) nor ρq (see Eq. (18))
becomes a constant function: in other words, the two observables A1 and A2

appear to be classically as well as quantum correlated though there is no total
correlation. The classical and the quantum correlations cancel each other out—an
effect that involves a sort of “hidden entanglement” and might deserve further
attention.

Summing up, a consistent separation of a total correlation into a classical
and a quantum term requires the knowledge of the particular statistical content
of the mixed state we are dealing with, a knowledge sitting outside the standard
quantum frame. This might appear unsatisfactory in view of the naturalness of the
notions of classical and quantum correlations referred to. Let us notice that classical
and quantum correlations can be consistently separated within the probability
frame considered in Beltrametti and Bugajski (1995, 2002, 2003) and Bugajski
(1996), where the adopted family of observables is rich enough to separate distinct
statistical contents of a mixed state.
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